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LEITER TO THE EDITOR 

Exact evaluation of the collapse phase boundary for 
two-dimensional directed polymers 

Damien P Foster 
Department of Theoretical Physics, 1 Keble Road, University of Oxford OX1 3NP, UK 

Received 22 August 1990 

Abstract. The phase boundary of the collapsed phase for a directed polymer on a square 
lattice in the presence of an attractive wall and monomer-monomer interactions is calculated 
exactly using transfer-matrix techniques. The position of the multicritical point is also 
identified. 

Polymer adsorption on a substrate has received considerable attention both because 
of its intrinsic merit as an interesting problem in statistical mechanics [ 11 and because 
of its technological importance in the stabilization of colloidal dispersions used in 
paints, pharmaceuticals and foodstuffs [2]. While the adsorption of a self-avoiding 
walk is now well understood [3-71, models where monomer-monomer interactions 
compete with the surface attraction have only become the focus of attention recently 

In this letter we calculate the phase boundaries of a directed self-avoiding walk 
with nearest-neighbours attractive interactions in the presence of an adsorbing wall. 

We consider a directed polymer on a strip of width Ny as shown in figure 1. The 
polymer is directed in that steps in the negative x direction are forbidden. Hence, the 
position of the polymer in column i, ni ,  is unique. The attraction to the substrate is 
modelled by assigning an energy K to each column in which ni = 1 or N y .  Nearest- 
neighbour interactions between monomers are introduced through an attractive energy 
J between bonds which occupy the same row in adjacent columns. 

This model was solved for J = O  by Privman et a1 [7]. The full parameter space 
was explored numerically using finite-size scaling by Veal er a1 [lo]. They found the 

[8-111. 

t 

n, = 
i-2 i - 1  i i+ l  ic2 

Figure I. A directed polymer on a strip of width N. The polymer interacts with the surfaces 
of the strip (hatched lines). Monomer-monomer interactions are represented by double 
lines. 
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three phases shown in figure 2 and gave values for the multicritical point conjectured 
to be exact. Subsequently Binder et 01 [ 111 have solved the problem exactly for K = 0. 
In this letter we extend their work and calculate exactly the boundary of the collapsed 
phase. We identify the multicritical point and confirm the conjecture of Veal et a1 [ 101. 

Our analysis commences by defining the grand partition function 

Z =  U L K ‘ T n  (1) 
walks 

where o is the fugacity, K = exp(-K/k,T) and r = exp(-J/k,T). L is the number of 
monomers in the walk, 1 the number of visits to the wall and n the number of 
monomer-monomer interactions. 

2 may be rewritten as a sum of partition functions, ZL,, for polymers with L, steps 
in the x direction 

2 = 2 L T .  (2) 
L, 

To evaluate 2 we write ZLx in terms of a transfer matrix, T [12]. Due to the 
monomer-monomer interactions we need to use a transfer matrix of dimensionality 
N:.  The elements of the transfer matrix, labelled by a = ( r ~ , - ~ ,  n,), B = (n,, n,+J are 

where 
Tu,@ = L-,# K ‘-.e rn-.B (3)  

L,, = 1+f[lnt-1 --n,l+Inl -nt+lIl 

nu,@ = i  min(ln,-, - 4, In, - nl+ll)(l -sgn((n,-l - n l ) ( n t  - n,+l))) .  
L,@ = & , - , , I  + a n , - , ,  N, 
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Writing Z in terms of T gives 

Z a T2( 1 - T ) - ’ .  (4) 

Z develops a singularity when h o ,  the largest eigenvalue of T, is equal to unity. In 
this limit ( L )  + 00. We defined a critical fugacity, w,( K, T), by 

A,[ w,] = 1. ( 5 )  

It was found [lo, 111 that the collapsed phase occupies the region in phase space 
where W T  > 1. Here the largest eigenvalue of T depends exponentially upon Ny and 
the polymer has finite density as well as infinite length. The transition boundary is 
given by W,T = 1. 

Substituting the condition WT = 1 into the transfer matrix it can be rewritten in the 
form 

( 6 )  T = L-.P K ‘e.@ 4 

where 

L&,p = La,@ - = 1 ++In,-, - n,+,l 

4,s  = S n , _ , , l +  S ~ , _ , , N ,  

L’ does not depend on n , .  Therefore ZL, can be reduced to the product of partition 
functions for two sublattices made up of alternate columns of the full lattice. Another 
way of looking at this is that the full matrix may be written as the direct productt of 
two identical matrices (Owczarek, private communication), 

T 2 = t @ t  (7)  

t 4 J  = 0 ‘t.1 K ‘dJ (8) 

where t is an Ny by Ny matrix with elements 

where 

L,,, = 1 +$ti - J l  
IJ,J = S ~ , l  + &l,N,  . 

It is clear from (7) that the largest eigenvalues of T and t are the same and hence A. 
may be found from t [7]. 

The eigenvalue spectrum of t consists (in the limit Ny +CO) of a continuous set of 
eigenvalues corresponding to an unbound state and at most one bound state eigenvector 
and corresponding eigenvalue. 

For the transition between the free and collapsed phases the largest eigenvalue 
corresponds to the top edge of the continuous spectrum, 

This is independent of K. Setting A,, = 1 gives a value for wco, and hence 7 = l/uca, on 
the phase boundary 

~,=$[(17+3d%)’/~+(17-3d%)’’’-l]~=O.295 4977.. . . (10) 
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For the boundary between the adsorbed and collapsed phases the largest eigenvalue 
corresponds to the bound state and is given by 

0 2 K  
A F u n d  = OK + 

K ( l - O ) - l .  

Putting AYnd = 1 and W,T = 1 gives the boundary 
phases 

T+ 1 J ( T ~ +  1 ) 2 - 4 ~ 3  
K=-+ 

2 2(T-1) 

The multicritical point is then found from the 
A unbound - - 1  and w ~ = 1  

~ * = ( 1 - ~ 2 ~ ' ~ ) - ' = 2 . 1 9 1  4878 . .  . 
02 = 0.295 5977 , . . 
T* = 3.382 9757. . . . 

(11) 

between the bound and collapsed 

(12) 

simultaneous solution of A bound = 

The expression for K * is in agreement with the conjecture of Binder et al [ 111. 
Physically (6) corresponds to considering only the 'excess' bonds, those not involved 

in monomer-monomer interactions. The condition A o +  1 now corresponds to the 
number of excess bonds becoming infinite. This point corresponds to the transition 
from the collapsed phase to the extended phases. 

In summary in this letter we give exact results for the boundary of the collapsed 
phase in a model of a directed polymer attracted to an adsorbing substrate with 
monomer-monomer interactions. The position of the multicritical point between the 
bound, extended and collapsed phases is also calculated exactly. 

I thank Julia Yeomans for suggesting this problem, for useful discussions and for a 
careful reading of the manuscript. I would also like to thank P-M Binder, A L Owczarek 
and A R Veal for helpful conversations and acknowledge support from the SERC. 

After this work was completed we learnt that similar results have been obtained 
by F Igloi, Institute fur Theoretische Physik, Universitat zu Koln, Federal Republic 
of Germany. 
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